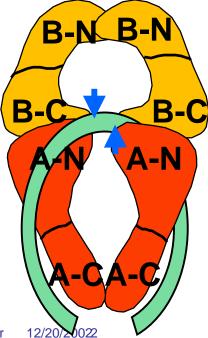
Gene expression changes triggered by exposure of Haemophilus influenzae to Novobiocin or Ciprofloxacin:


# Combined transcription and translation analysis

Hans Gmuender, Karin Wernli-Kuratli, Karin Di Padova, Stefan Evers F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland GeneData AG, CH-4016 Basel, Switzerland



### Some properties of *E.coli* DNA gyrase

|                   | Subunit A                   | Subunit B            |  |
|-------------------|-----------------------------|----------------------|--|
| Gene              | <i>gyrA</i> 2625 bp         | 2625 bp gyrB 2412 bp |  |
| Mol. wt.          | 96,887 (875 aa)             | 89,893 (804 aa)      |  |
| Major role        | Breakage and reunion of DNA | ATPase activity      |  |
| Drug interactions | Target of quinolones        | Target of coumarins  |  |



DNA Gyrase: mol. wt. = 373,560Active enzyme  $A_2B_2$  tetramer

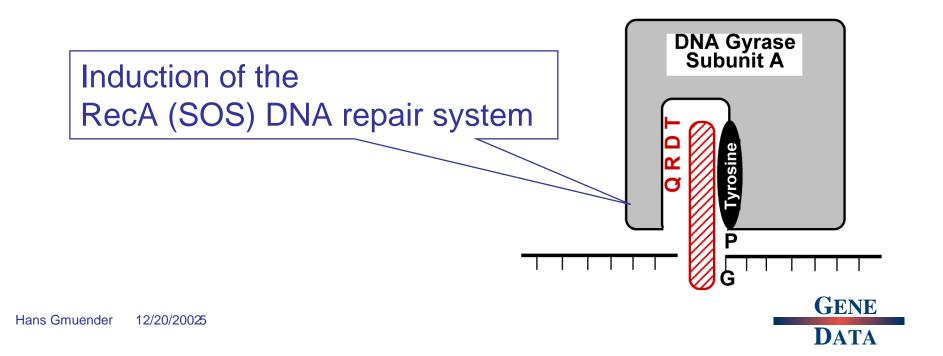


Hans Gmuender

# Goal of the study: Gene expression profiling

- Target: Haemophilus Influenzae
- Antibiotics: Ciprofloxacin (Quinolones) Novobiocin (Coumarins)
- Both antibiotics inhibit DNA gyrase but by different mechanisms




### Mode of action of Novobiocin

- Novobiocin inhibits ATPase activity of DNA gyrase
   → compensation by overexpression of gyrase
- Novobiocin affects steady-state supercoiling level of DNA
- Transcription of many genes is sensitive to DNA supercoiling
   → Global pattern of gene expression changes
   in a complex way



### Mode of action of Ciprofloxacin

- Ciprofloxacin builds with the enzyme and DNA a stable ternary complex
  - $\rightarrow$  DNA damaged
  - $\rightarrow$  repair by inducing the SOS-repair system



### **Cell cultures**

- Bacterial cultures in minimal medium with a reduced methionine concentration (0.6 µM) to an OD<sub>600</sub> of 0.4
- Novobiocin: 0, 12.5 and 125 μg/ml
- Ciprofloxacin: 0, 30 and 300 µg/ml
- Time points: 10, 30 and 60 min
- To an aliquot L-[<sup>35</sup>S]Methionine (>37 TBq/mmol) added and incubation continued for 2 min
- Cells rapidly chilled on ice, harvested by centrifugation, frozen in liquid nitrogen and kept at –80°C



#### **Isolation of total RNA**

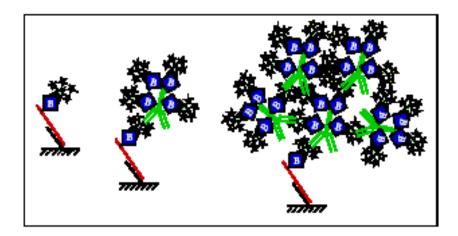
- Incubation with preheated hot phenol for 5' at 60 °C
- Addition of preheated NAES buffer (1% SDS) for 5' at 60 °C
- Cooled on ice and phase separated
- Additional phenol extractions until interface is clean
- Isopropanol precipitation
- Resuspended in DEPC-water followed by Qiagen Midi "clean up"
- DNase treatment for 15' at 37 °C
- Precipitation, resuspension and quantification by E<sub>260</sub>



## Labeling of random primed sscDNA

- Labeling reaction overnight at 37 °C containing
  - RNA < 0.5 μg/μl
  - Random hexamers (hexamers /  $RNA = \frac{1}{4}$ )
  - Reverse transcriptase (100 units / µg RNA)
  - Nucleotide mix (dCTP, cGTP, dTTP, dATP)
  - Biotinylated dATP
- NaOH 30' at 60 °C
- Neutralized, precipitated, resuspended
- 2% agarose gels
  - Single strand cDNA sizes should range from 50 to 500 bases




#### **Fragmentation and hybridization**

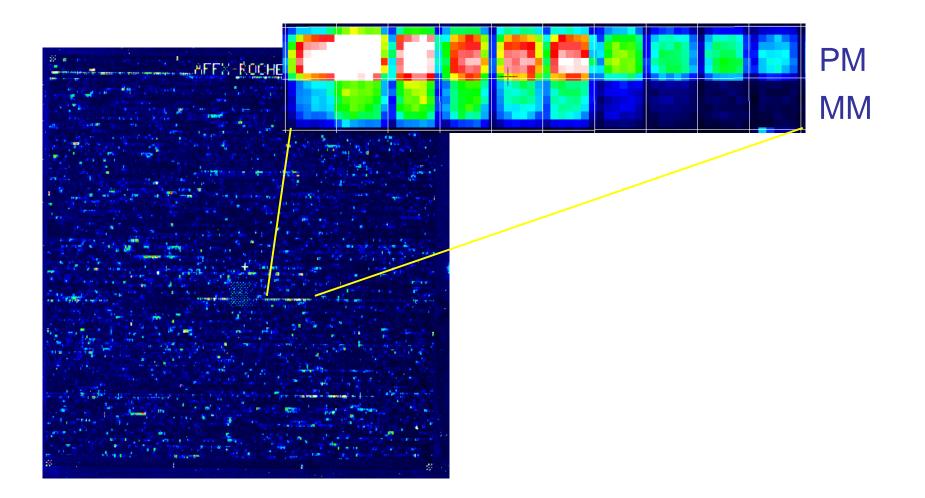
- Column purification of sscDNA
- Fragmentation in smallest volume possible in Tris-Acetate, pH 8.1, KOAce, MgOAce for 40 min at 95 °C
- Centrifuged through 0.22 µm filter units
- Hybridized on prehybridized DNA chips overnight at 40 °C 60 rpm containing
  - fragmented cDNA
  - fragmented yeast RNA
  - acetylated BSA



## **Staining and washing**

- Washing under stringent and non-stringent conditions
- Staining with streptavidin-R-phycoerythrin (SAPE) in the presence of acetylated BSA
- Incubation with biotinylated-anti-streptavidin
- Amplification with streptavidin-R-phycoerythrin
- Washing under non-stringent conditions






### **DNA** microarray

- High-density microarray contains oligonucleotides for
  - ca. 2000 genes from the bacterium *Streptococcus pneumoniae* and for
  - ca. 1800 genes from *Haemophilus influenzae*
- 25mer oligonucleotides for a specific gene usually include 25 probe pairs (PM and MM) and at least 20 probe pairs for very short genes
- In addition microarray contains many
  - control genes
  - sequence information from intergenic regions
  - genes coding for ribosomal and transfer RNA



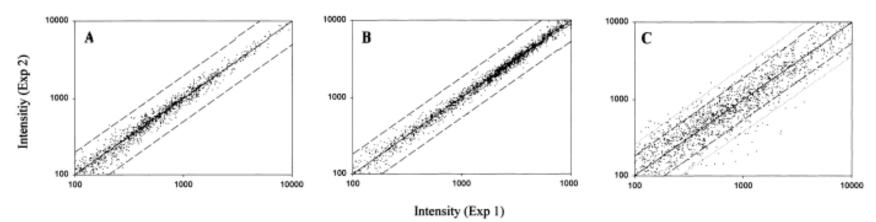
### **DNA** microarray





### 2D - PAGE

- Cells lysed in 8 M urea, 4 % CHAPS, 40 mM of Tris base, 65 mM of 1,4-dithioerythritol and 2% ampholytes
- Aliquots of the supernatants containing 4 x 10<sup>6</sup> cpm of radioactivity loaded onto 3-10 non-linear pH gradient strips at the basic end
- Strips equilibrated and loaded onto vertical 12% polyacrylamide slab gels
- Parallel samples (one sample per time point and concentration and their corresponding control) run on parallel gels (same batch of strips, same isoeletric focusing run, same batch of gels for SDS-PAGE and same SDS-PAGE run)
- Only pairs of gels that had been obtained under identical conditions considered for analysis




#### Data analysis

- Spot intensities normalized (sum of all spot intensities equal for all gels)
- Significance of results estimated using t-test for paired samples (p-values < 0.05, changes considered as significant)</li>
- Microarray hybridization intensities processed using Affymetrix GeneChip algorithm
- Analysis and clustering performed with
  - Microsoft Access
  - SAS Enterprise Miner
  - GeneData Expressionist



#### Reproducibility



- A: Hybridization results obtained from the same RNA but independently reverse transcribed and hybridized
- **B**: Hybridization results obtained from independently isolated, reverse transcribed and hybridized RNA from same cultures
- **C**: Hybridization results obtained from RNA isolated from different cultures grown under same conditions

Solid line = ideal 1:1 ratio; dashed line a factor of two; broken line a factor of three between the two measurements



## **Reproducibility of mRNA quantification**

| Sample Preparation                       | Experiment | NF <sup>a</sup> | Increased or decreased <sup>b</sup> | Fold Change<br>>2 or <-2 |
|------------------------------------------|------------|-----------------|-------------------------------------|--------------------------|
| Same culture,                            | 1          | 0.98            | 1                                   | 0                        |
| same RNA preparation,                    | 2          | 1.27            | 29                                  | <b>6</b> <sup>c</sup>    |
| independent labeling and hybridization   | 3          | 0.66            | 7                                   | 0                        |
| Same culture,                            | 1          | 0.88            | 32                                  | 7                        |
| independent RNA                          | 2          | 1.12            | 3                                   | 1                        |
| preparation, labeling, and hybridization | 3          | 1.34            | 13                                  | 1                        |
| ΠγυπαιΖατιστι                            | 4          | 1.70            | 3                                   | 0                        |
| Different cultures                       |            | 1.22            | 333                                 | 61                       |

<sup>a</sup> NF = normalization factor

<sup>b</sup> Transcripts called increased or decreased according to the Affymetrix GeneChip software

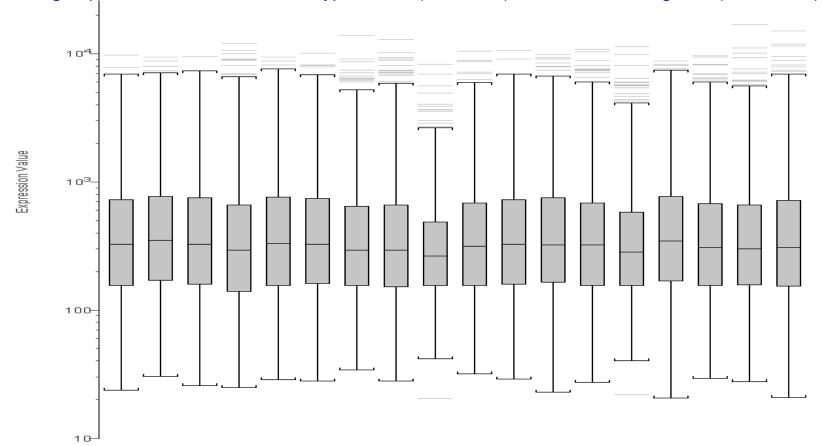
° Fold Changes between –2.1 and –2.5

<sup>d</sup> Genes total = 1961



### Data condensation and aggregation

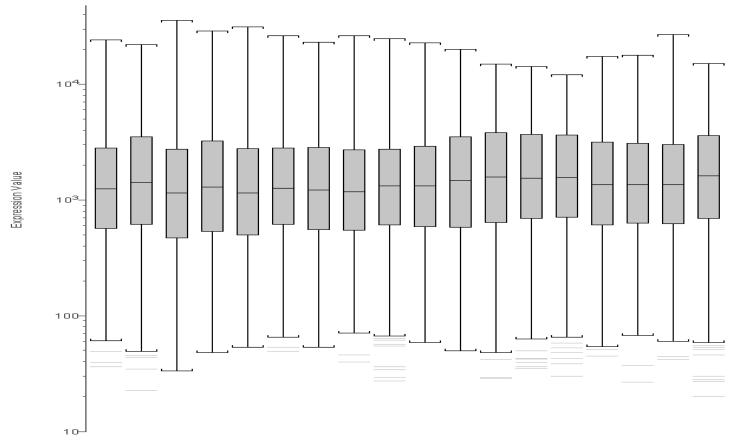
- Normalization
- Filter by valid value proportion > 0.5
- Filter by high variance
- Separate groups by Kruskal-Wallis test (ranking test)
- Clustering (SOM, hierarchical clustering, k-Means)
- Principal components analysis




### **Boxplot Ciprofloxacin**

Expression value filtering: Normalization:

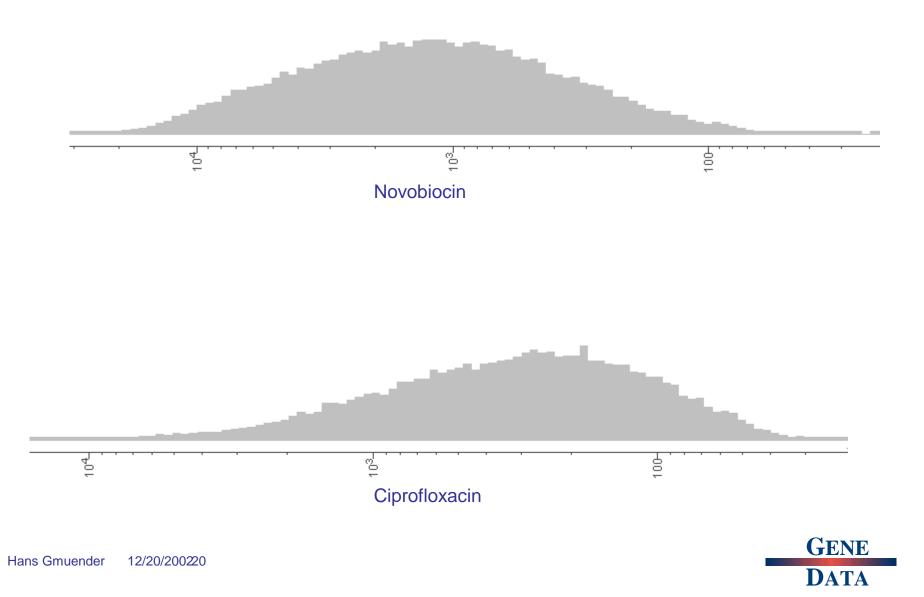
Gene groups:


minimum = 20, only present values logarithmic mean, reference value = 407 HI hypothetical (658 items) and HI described genes (1037 items)

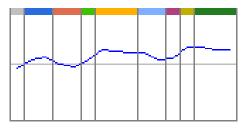




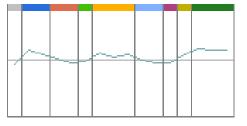
## **Boxplot Novobiocin**


Expression value filtering: Normalization: Gene groups: minimum = 20, only present values logarithmic mean, reference value = 1215 HI hypothetical (658 items) and HI described genes (1037 items)

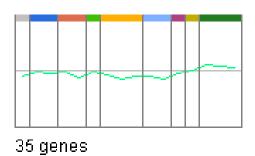


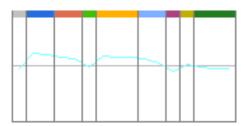



12/20/200219

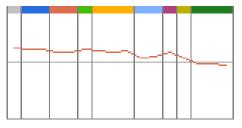

#### **Distribution of intensities**



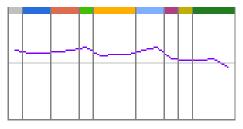

# Ciprofloxacin: Clusters of up- or downregulated genes




16 genes



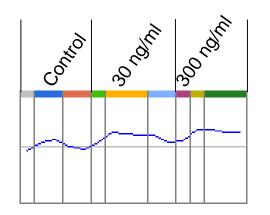





78 genes

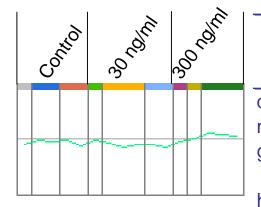



54 genes



27 genes




# Ciprofloxacin: Upregulated genes at low and high concentration



|      |                                      | Fold change   |
|------|--------------------------------------|---------------|
|      |                                      | highest value |
|      | Gene product                         | (protein)     |
|      | Conserved hypothetical protein       | 3             |
| recn | DNA repair protein                   | 12            |
| uvra | Excinuclease ABC subunit A           | 4             |
| ssb  | Single-stranded DNA binding protein  | 5 (NC)        |
| ruvb | Holliday junction DNA helicase       | 3             |
| ruva | Holliday junction DNA helicase       | 4             |
| gyrb | DNA gyrase, subunit B                | 2             |
| reca | RecA recombinase                     | 6             |
| lexa | LexA repressor                       | 12            |
| dapf | Diaminopimelate epimerase            | 5             |
| mutb | DNA helicase II                      | 3             |
| mfd  | Transcription-repair coupling factor | 3             |
| impa | ImpA protein                         | 20            |
|      |                                      |               |
| pgk  | Phosphoglycerate kinase              | NC (3)        |



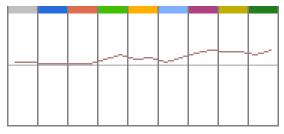
# Ciprofloxacin: Upregulated genes at high concentration



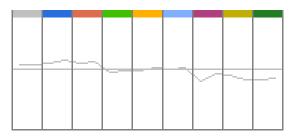
|      |                                                            | Fold change   |
|------|------------------------------------------------------------|---------------|
|      | Gene product                                               | Highest value |
|      |                                                            | (protein)     |
| dnak | Heat shock protein 70                                      | 11            |
| napa | Neutrophil activating protein                              | 9 (3.4)       |
| gmk  | Guanylate kinase                                           | 9             |
|      | Oxidoreductase                                             | 6             |
| holc | DNA polymerase III, Chi subunit                            | 6             |
| glpq | Glycerophosphoryl diester phosphodiesterase                | 5             |
| nlpb | Lipoprotein-34                                             | 5             |
| merp | Mercuric transport protein periplasmic component precursor | 5             |
| pyrr | Pyrimidine operon regulatory protein                       | 5 (NC)        |
| merp | Mercury scavenger protein                                  | 5             |
| tig  | Trigger factor                                             | 5 (2)         |
| tesb | Acyl-Coa thioesterase II                                   | 5             |
| rsga | Ferritin like protein                                      | 4             |
| pepp | Aminopeptidase P                                           | 4             |
| oapa | Cell envelope protein                                      | 4             |
| rpoz | RNA polymerase omega subunit                               | 4             |
| purr | Purine nucleotide synthesis repressor protein              | 4             |
| clpx | ATP-dependent protease ATPase subunit                      | 4 (NC)        |



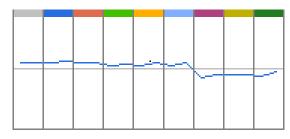
# Ciprofloxacin: Downregulated genes at high concentration


|       |                                                    | Fold Change   |      |                                                       | Fold Change   |
|-------|----------------------------------------------------|---------------|------|-------------------------------------------------------|---------------|
|       | Gene Description                                   | highest value |      | Gene Description                                      | highest value |
|       |                                                    | (protein)     |      |                                                       | (protein)     |
| asna  | Aspartateammonia ligase                            | -39 (NC)      | rbsb | Periplasmic ribose-binding protein                    | -7            |
| dha   | Glutamate dehydrogenase                            | -25           | brab | Branched chain AA transport system II carrier protein | -7            |
| artq  | Arginine transport system permease protein         | -22           | рере | Peptidase E                                           | -6            |
| mui   | Iprotein                                           | -14           | tehb | Tellurite resistance protein                          | -6            |
| groel | Heat shock protein                                 | -13           | glk  | Glucose kinase                                        | -6            |
| asnc  | Regulatory protein                                 | -12           | dppa | Heme-binding lipoprotein                              | -6            |
| ррс   | Phosphoenolpyruvate carboxylase                    | -11           | gmha | Phosphoheptose isomerase                              | -5            |
| infa  | Initiation factor IF-1                             | -10           | uraa | Uracil permease                                       | -5            |
| gltp  | Proton glutamate symport protein                   | -10           | merp | Mercury scavenger protein                             | -5            |
| lamb  | Lactam utilization protein                         | -9            | fruk | 1-phosphofructokinase                                 | -5            |
| asd   | Aspartate-semialdehyde dehydrogenase               | -9            | trpg | Anthranilate synthase component II                    | -5            |
| arsc  | ARSC protein                                       | -9            | dsbb | Oxido-reductase                                       | -5            |
| folc  | Folylpolyglutamate synthase/Dihydrofolate synthase | -8            | glpr | Glycerol-3-phosphate regulon repressor                | -5            |
| tsf   | Elongation factor EF-ts                            | -8            | thrb | Homoserine kinase                                     | -5 (NC)       |
| lctp  | L-Lactate permease                                 | -8            | thra | Aspartokinase I / Homoserine dehydrogenase I          | -5 (NC)       |
| dead  | ATP-dependent RNA helicase                         | -8            | cyse | Serine acetyltransferase                              | -5            |
| hflc  | Lambda cll stability-governing protein             | -7            | p14  | p14 protein                                           | -5            |
| frua  | Fructose-permease llbc component                   | -7            | meng | Menaquinone biosynthesis protein                      | -5            |
| pfka  | 6-phosphofructokinase                              | -7            | vapa | Virulence associated protein A                        | -5            |
| bett  | High-affinity choline transport protein            | -7            | metx | S-adenosylmethionine synthetase 2                     | -5 (-1.9)     |
| mena  | Menaquinone biosynthesis protein                   | -7            |      |                                                       |               |
| serc  | Phosphoserine aminotransferase                     | -7            | topa | Topoisomerase I                                       | -4            |

# Ciprofloxacin: Changes at the protein level at high concentration

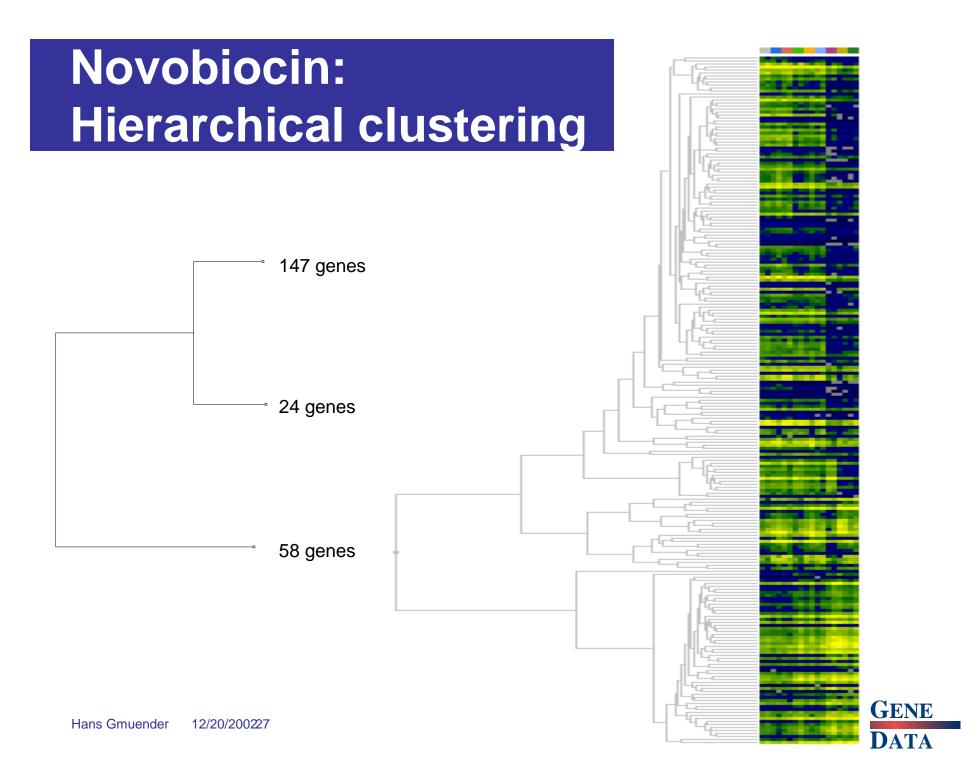

|      | Gene product                        | Fold change protein<br>(mRNA) |           |  |
|------|-------------------------------------|-------------------------------|-----------|--|
|      |                                     |                               | 60 min    |  |
| ssb  | Single-stranded DNA binding protein | 2.0 (5)                       | 1.5 (5)   |  |
| hslv | HsIUV operon heat shock protein     | 3.6 (NC)                      | 3.2 (NC)  |  |
|      | Conserved hypothetical protein      | -2.5 (NC)                     | -1.5 (-3) |  |
| tsf  | Elongation factor EF-Ts             | -2.2 (NC)                     | -3.2 (-8) |  |
| glys | Glycyl-tRNA synthetase beta chain   | NC (NC)                       | 3.4 (2)   |  |
| deoc | Deoxyribose aldolase                | 1.4 (NC)                      | 2.7 (2)   |  |
| metx | S-Adenosylmethionine synthetase 2   | -1.3 (NC)                     | -1.9 (-5) |  |
| ribh | Riboflavin synthase, beta chain     | 2.7 (NC)                      | 1.7 (2)   |  |
| napa | Neutrophil activating protein       | 1.7 (NC)                      | 3.4 (9)   |  |




# Novobiocin: Clusters of up- or downregulated genes



54 Genes



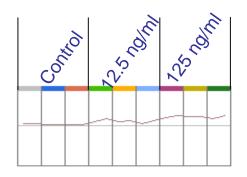

26 Genes



109 Genes






# Novobiocin: Downregulated genes at low and high concentration

| K K K                       |                                                             |                                           |
|-----------------------------|-------------------------------------------------------------|-------------------------------------------|
| Control 25 notice 25 notice | Gene product                                                | Fold change<br>highest value<br>(protein) |
|                             | Conserved hypothetical protein                              | -15                                       |
|                             | Conserved hypothetical protein                              | -13                                       |
|                             | Conserved hypothetical protein                              | -12                                       |
| gltp                        | Proton glutamate symport protein                            | -7                                        |
| glpr                        | Glycerol-3-phosphate regulon repressor                      | -6                                        |
| topa                        | Topoisomerase I                                             | -6                                        |
| frr                         | Ribosome releasing factor                                   | -5 (-3.1)                                 |
|                             | Glucose kinase                                              | -5                                        |
| riba                        | GTP cyclohydrolase II                                       | -4                                        |
| pdxh                        | Pyridoxamine phosphate oxidase                              | -4                                        |
| prtc                        | Collagenase                                                 | -4                                        |
| met2                        | Homoserine acetyltransferase                                | -4                                        |
| potd                        | Spermidine/putrescine-binding periplasmic protein precursor | -4                                        |
| merp                        | Mercury scavenger protein                                   | -4                                        |



# Novobiocin: Upregulated genes at low and high concentration

|      |                                                    | Fold Change   |
|------|----------------------------------------------------|---------------|
|      | Gene product                                       | highest value |
|      |                                                    | (protein)     |
| rffe | UDP-N-Acetylglucosamine epimerase                  | 6             |
| mdl  | Multidrug resistance protein                       | 5             |
| lktb | Leukotoxin secretion ATP-binding protein           | 5             |
| hype | Hydrogenase gene region                            | 5             |
| map  | Methionine aminopeptidase                          | 4 (3.2)       |
| rfbp | Undecaprenyl-phosphate galactosephosphotransferase | 4             |
| htrh | Htra-like protein                                  | 4             |
| nusb | N utilization substance protein B                  | 4             |
| mlga | Virulence plasmid protein                          | 4             |
|      | fmu/fmv gene product                               | 4             |
| recf | DNA/ATP binding protein                            | 4             |



|      |                                                   | Fold Change   |
|------|---------------------------------------------------|---------------|
|      | Gene product                                      | highest value |
|      |                                                   | (protein)     |
| rpod | RNA polymerase sigma-70 factor                    | 3             |
| def  | Polypeptide deformylase                           | 3             |
| pth  | Peptidyl-tRNS hydrolase                           | 3             |
| hemx | Uroporphyrinogen iii methylase                    | 3             |
| dang | DNA primase                                       | 3             |
| fabh | beta-ketoacyl-ACP synthase III                    | 3             |
| fumc | Fumarate hydratase class II                       | 3             |
| gyrb | DNA gyrase, subunit B                             | 3             |
| plsb | Glycerol-3-phosphate acyltransferase              | 3             |
| ftse | Cell division ATP-binding protein                 | 3             |
| pgk  | Phosphoglycerate kinase                           | 3             |
| uvrb | Excinuclease ABC subunit B                        | 3             |
| gyra | DBA gyrase, subunit A                             | 3             |
| ribh | Riboflavin synthase, beta chain                   | 3             |
| menc | O-succinylbenzoate-Coa synthase                   | 3             |
| nlpd | Lipoprotein                                       | 3             |
| purr | Purine nucleotide synthesis repressor protein     | 3             |
| ftsy | Cell division protein                             | 3             |
| fabd | Malonyl Coa-acyl carrier protein transacylase     | 3             |
| dnaa | Chromosomal replication initiator protein         | 2             |
| ftsx | Cell division membrane protein                    | 2             |
| dcd  | Deoxycytidine triphosphate deaminase              | 2             |
| metg | Methionyl-tRNA synthetase                         | 2             |
| nrda | Ribonucleoside-diphosphate reductase, alpha chain | 2             |
| dnab | Replicative DNA helicase                          | 2             |



# Novobiocin: Changes at the protein level at high concentration

| Gene product                                 | Fold Change protein (mRNA) |                           |              |
|----------------------------------------------|----------------------------|---------------------------|--------------|
|                                              | 10 min                     | 30 min                    | 60 min       |
| Oxidoreductase                               | -3.1 (NC)                  | -3.5 (NC)                 | -1.7 (NC)    |
| Aspartokinase I / Homoserine dehydrogenase I | -2.6 (-3.4)                | -1.3 (NC)                 | -2.0 (-2.0)  |
| Adhesin B precursor                          | -261.8 (NC)                | <mark>-12.8 (-2.8)</mark> | -34.1 (-2.7) |
| Inorganic pyrophosphatase                    | -2.1 (1.2)                 | -3.3 (NC)                 | -5.4 (NC)    |
| Periplasmic ribose-binding protein           | -1.8 (-2.2)                | -2.5 (-3.9)               | -3.5 (-1.9)  |
| Fructose-bisphosphate aldolase               | 2.0 (1.8)                  | 2.1 (1.6)                 | 1.0 (1.9)    |
| Phosphoglycerate kinase                      | -2.0 (2.2)                 | -2.1 (2.1)                | -2.9 (2.0)   |
| Heat shock protein GroES                     | -1.9 (-2.3)                | -4.4 (-4.6)               | -3.5 (-3.7)  |
| Ribosomal protein L9                         | -3.5 (-1.5)                | -2.0 (-1.7)               | -3.6 (NC)    |
| Ribosomal protein S6                         | -4.2 (NC)                  | -2.1 (NC)                 | -2.7 (NC)    |
| 6-Phosphogluconate dehydrogenase             | -5.5 (NC)                  | -4.4 (NC)                 | -3.2 (NC)    |
| Conserved hypothetical protein               | -3.8 (-2.1)                | -3.8 (-2.9)               | -4.0 (-2.3)  |
| Ribosome releasing factor                    | -4.7 (-4.5)                | -4.4 (-5.4)               | -4.7 (-4.9)  |
| Disulfide oxidoreductase                     | -2.6 (NC)                  | -2.0 (-1.9)               | -2.4 (-2.1)  |
| Ribosomal protein S2                         | -2.3 (NC)                  | -3.8 (-2.4)               | -5.2 (-2.2)  |
| Elongation factor EF-Ts                      | -4.2 (NC)                  | -5.5 (-3.0)               | -2.9 (-2.6)  |
| Glycyl-tRNA synthetase alpha chain           | 2.5 (NC)                   | 2.9 (1.5)                 | -1.2 (1.6)   |
| Uracil phosphoribosyltransferase             | -3.0 (-2.0)                | -3.2 (-2.2)               | -3.4 (-2.0)  |
| Hypothetical protein                         | -4.1 (1.3)                 | -3.2 (-3.5)               | -2.9 (-3.2)  |
| Conserved hypothetical protein               | -2.0 (-2.3)                | -1.8 (-1.8)               | -2.3 (-1.6)  |
| Enoyl- reductase                             | -8.8 (-2.6)                | -7.2 (-2.6)               | -6.2 (-2.1)  |



#### Common up- or downregulated genes

#### 138 genes up- or downregulated

| ftse | cell division atp-binding protein |               |  |
|------|-----------------------------------|---------------|--|
| ftsh | cell division protein             | upregulated   |  |
| ftsy | cell division protein             |               |  |
| gyra | dna gyrase, subunit a             | upregulated   |  |
| gyrb | dna gyrase, subunit b             | upregulated   |  |
| uvrb | excinuclease abc subunit b        | upregulated   |  |
| rpod | rna polymerase sigma-70 factor    | upregulated   |  |
| rpoe | rna polymerase sigma-e factor     | downregulated |  |
| uree | urease accessory protein          |               |  |
| uref | urease accessory protein          |               |  |
| ureg | urease accessory protein          | downregulated |  |
| ureh | urease accessory protein          | uowinegulateu |  |
| ureb | urease, beta subunit              |               |  |
| urea | urease, gamma subunit             |               |  |



#### Conclusions

- High density microarrays yield highly reproducible results
- Transcripts can reproducibly be detected even when present at low concentrations
- Sensitivity and reproducibility of the expression analysis using oligonucleotide chip technology was better than expression analysis using 2D-PAGE
- Expression analysis using the bacterial microarray system or 2D gels can be used to profile the effect of an inhibitor on a cell
- Main challenge is to discover the appropriate concentration and time points



### Conclusions

- Ciprofloxacin and Novobiocin illustrate that response to an antibiotic can yield important information about mode of action
- Both compounds induce expression of DNA gyrase and negatively affect topoisomerase I expression
- Ciprofloxacin mainly stimulates expression of DNA repair systems
- Novobiocin changes expression rates of many genes reflecting the fact that the initiation of transcription for many genes is sensitive to DNA supercoiling
- Changed expression levels also observed for many genes coding for proteins either annotated as "unknown function" or "hypothetical" or for proteins not directly involved in DNA topology or repair



Acknowledgements

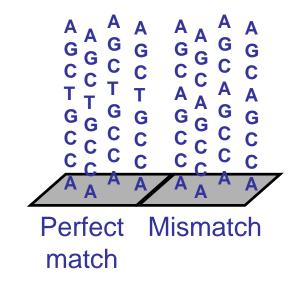
#### Stefan Evers (2D-PAGE)

#### Karin Wernli-Kuratli (DNA microarray) Karin Di Padova (2D-PAGE)

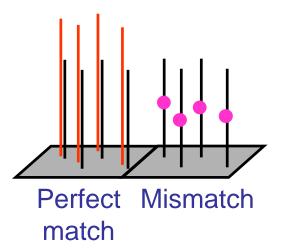
Christopher P. Gray Wolfgang Keck






Hans Gmuender 12/20/200234

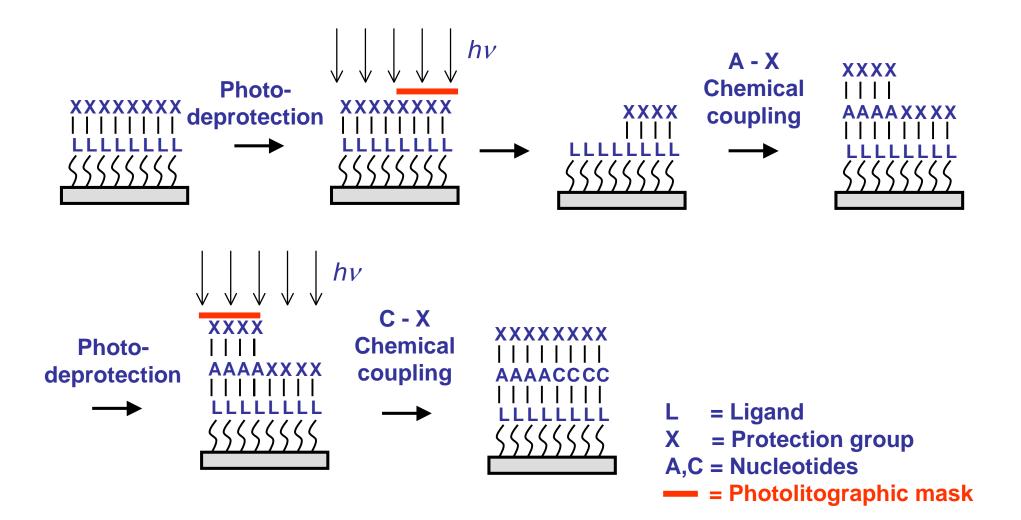



Hans Gmuender 12/20/200235

### **Genechip probe array**

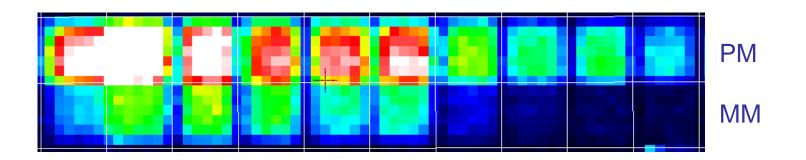
#### 25mers from sense strand



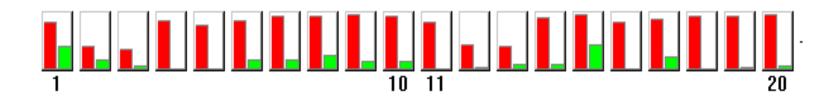

#### Hybridization of IVT (40° C)



- Wash (high stringency and low stringency)
- Hybridized IVT stained with streptavidin phycoerythrin
- Fluorescent signals detected by scanning confocal microscopy

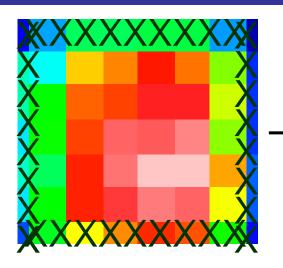


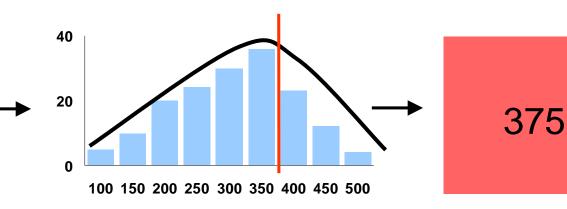

### **Light-directed chemical synthesis**






#### **Fluorescent signal detection**





- Space occupied by each specific oligonucleotide sequence is termed a 'feature'
- Each feature contains  $\approx 10^7 25 \text{mer oligos}$
- Fluorescent signal = average of intensities within a feature





#### **Calculating probe cell averages**





- 24 μm x 24 μm
- Array scanned at a resolution of 3 μm
- Creates 8 x 8 pixels for every feature
- Bordering pixels excluded
- Remaining pixel intensity distribution calculated
- Intensity value associated with 75 % of the the distribution used as AVERAGE INTENSITY of the feature



### **Background and noise**

- Eliminating autofluorescence and nonspecific binding
- Background
  - each chip divided in 4 x 4 zones
  - from each zone 2 % features with lowest Average Intensity (≈ 430 / zone)
  - background subtracted from average intensities of all features within zone
- Noise (Q)
  - Results from small variations in the digitized signal
  - Calculated by using the standard deviations of pixel intensities of the background cells



### Positive and negative probe pairs

- Statistical Difference Threshold (SDT)
   = Q \* SDT multiplier (default = 2 or 4)
- Statistical Ratio Threshold (SRT) = 1.5 by default
- For each pair of each gene: Difference PM - MM and ratio PM / MM
- If PM MM > Difference Threshold and PM / MM > Ratio Threshold
  - $\rightarrow$  Position considered positive
- If MM PM > Difference Threshold and MM / PM > Ratio Threshold
  - $\rightarrow$  Position considered negative



#### **Examples**



PM - MM = 180 > DT and PM / MM = 10.0 > RT $\rightarrow$  Position <u>positive</u> Difference Threshold = 50 Ratio Threshold = 1.5



PM - MM = 1000 > DT and PM / MM = 1.11 < RT $\rightarrow$  Position <u>not positive</u>



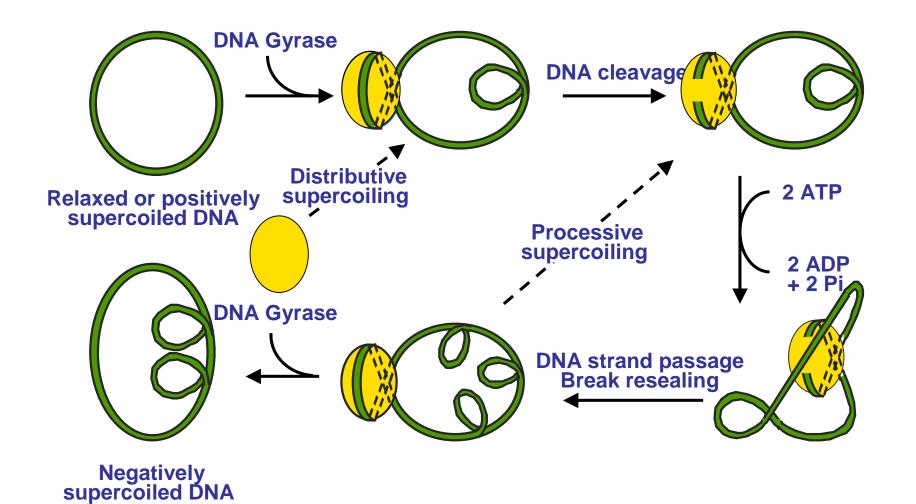
PM - MM = 16 < DT and PM / MM = 5 > RT $\rightarrow$  Position <u>not positive</u>



Hans Gmuender 12/20/200242

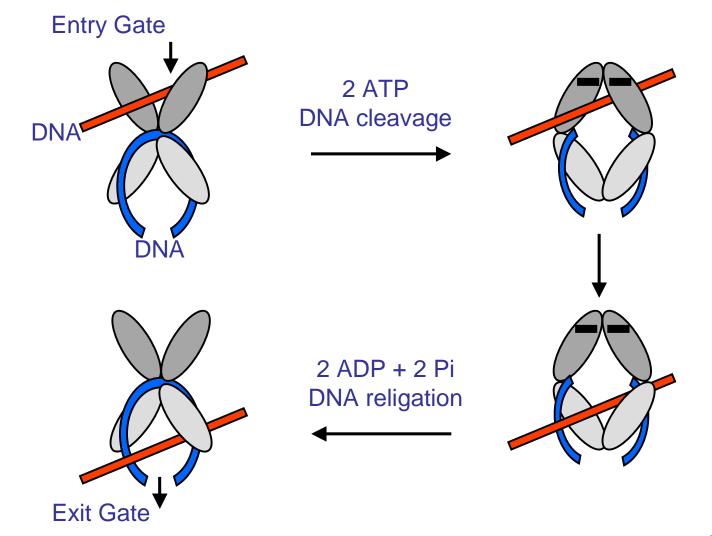
#### **Calculation for each gene**

- Positive fraction
  - Negative fraction
- ✓ Average of PM / MM ratios
- ✓ Positive/Negative
  - Average of intensity differences  $\sum$  (PM MM) / # of pairs in average


# of positives / # of pairs # of negatives / # of pairs  $10x \sum \log (PM / MM) / #$  of pairs in average # of positives / # of negatives  $\sum (PM - MM) / #$  of pairs in average

 $\checkmark$   $\rightarrow$  Decision matrix  $\rightarrow$  Transcript present or absent

Average intensity difference  $\rightarrow$  additional information about the abundance of a transcript




#### **Mechanism of DNA gyrase**





#### **Mechanistic model for DNA gyrase**





Hans Gmuender

12/20/200245